Diagnóstico de Desalinhamento em um Acoplamento de Disco Usando Análise por Órbita e por Espectro de Freqüência

Márcio Tadeu de Almeida - D.Eng. José Juliano de Lima Jr. - M.Sc. Escola Federal de Engenharia de Itajubá Depto de Engenharia Mecânica Av.: BPS, 1303 - Bairro Pinheirinho Fone: (035)622-1966 - R: 130

RESUMO

Neste artigo foi realizado um estudo de identificação das freqüências de vibração para desalinhamento de acoplamento. Foram realizados experimentos visando diagnosticar esse defeito, através do espectro de freqüência em tempo real e da órbita do eixo, usando um sistema de aquisição de dados; os componentes a 2xN e 4xN foram os que apresentaram maior variação com o desalinhamento.

1 Introdução

Uma importante fonte de vibração, em máquinas rotativas é o desalinhamento. Nas montagens mecânicas, geralmente, têm-se vários eixos, mancais e acoplamentos, com características dinâmicas diferentes. Quando o conjunto opera, aparecem forças de interação, que acabam causando vibrações.

O "alinhamento perfeito" entre os eixos, acionador e acionado, não existe na prática. Conseqüentemente, os equipamentos trabalham sempre com um desalinhamento, dentro de limites toleráveis (desalinhamento residual). Então, para transmitir potência de um eixo a outro, deve-se usar de preferência um conector mecânico flexível, que permita fácil montagem e desmontagem das máquinas conectadas, que possibilite o isolamento da vibração torcional, aborva (ou isole) o movimento de contração e expansão axial, e que absorva o desalinhamento angular, paralelo ou combinado. Este conector é conhecido como Acoplamento Flexível.

O desalinhamento sempre atua como uma pré-carga unidirecional sobre o eixo. Esta pré-carga é definida como uma carga direcional ou força aplicada sobre eixos rotativos, podendo ser dividida em duas categorias básicas: externa e interna.

A pré-carga externa é gerada, quando uma força é aplicada ao eixo, através de um elemento de acoplamento. Nesse caso, tem-se desalinhamento paralelo, angular ou combinado. A magnitude desta pré-carga é uma função do alinhamento obtido, como também, do tipo e condição do acoplamento. A mais alta magnitude é conseguida, com um acoplamento rígido, e a mais baixa com um acoplamento flexível.

A pré-carga interna é gerada por forças internas, quando a máquina está em operação. Como, por exemplo, tem-se: reação ao torque e forças nos dentes de engrenagens, associadas a redutores de velocidades, distorções da carcaça de uma máquina, provocando a ação do selo interno sobre o eixo e forças aerodinâmicas e hidráulicas.

2 Análise por Órbita

Uma fonte indicadora da presença da pré-carga é conseguida com o uso de sensores de proximidade, posicionados perto dos mancais. Algumas órbitas típicas, causadas por pré-carga na direção vertical, são apresentadas na fig. 1.

Figura 1: Órbitas Típicas do Desalinhamento

3 Análise por Espectro de Freqüência

Está-se interessado em determinar a freqüência de vibração do desalinhamento. Os eixos das máquinas são conectados por acoplamentos, conseqüentemente, para determinar tal freqüência, estudar-se-á o comportamento dinâmico de três tipos de acoplamentos. A seguir, serão analisados : a Junta Universal, o Acoplamento de Engrenagens e o Acoplamento de Disco Flexível.

3.1 Junta Universal

A fig. 2 mostra a conhecida Junta Universal ou Junta de Hooke ou Cardan. Ela consta de duas forquetas, que são os membros conhecidos como acionado e acionador, e uma cruzeta, que é a peça de conexão. Então, o eixo de acionamento é ligado ao eixo acinado, por meio da cruzeta de conexão.

Figura 2: Junta de Hooke

As linhas de centro dos eixos se interceptam em O, produzindo o ângulo do eixo β . Os extremos da cruzeta se ligam a forqueta de acionamento, nos pontos A e B, e a forqueta acionada em C e D.

Designando por ϕ o arco, através do qual gira o eixo acionador e de acordo com a Regra de Napier para ângulos retos e triângulos esféricos, vem:

$$tg\phi = \cos\beta tg\theta \tag{1}$$

Diferenciando

$$\frac{d\phi}{dt}sec^2\phi = \frac{d\theta}{dt}cos\beta sec^2\theta \tag{2}$$

Revista de Acústica e Vibrações, Vol.9-Junho/91 _____ 45

como,

$$\frac{d\theta}{dt} = \omega_s \ e \ \frac{d\phi}{dt} = \omega_e$$

tem-se:

$$\frac{\omega_s}{\omega_e} = \frac{\cos\beta}{1 - \sin^2\theta \sin^2\beta} \tag{3}$$

Expandindo a Eq. 3 em série de potência e convertendo-se essa série, em uma série que seja, exclusivamente, função de múltiplos de θ , tem-se :

$$\frac{\omega_s}{\omega_e} = \cos\beta \left[A_o + A_2 \cos 2\theta + A_4 \cos 4\theta + A_6 \cos 6\theta + A_8 \cos 8\theta + \ldots \right]$$
(4)

Por exemplo, fazendo-se $\beta = 15^{\circ}$, tem-se:

$$\frac{\omega_s}{\omega_e} = 1,000 - 3,467.10^{-2}cos2\theta + 6,008.10^{-4}cos4\theta -$$

$$+1,041.10^{-5}\cos 6\theta + 1,773.10^{-7}\cos 8\theta$$
 (5)

A Eq. 5 mostra que a freqüência circular do eixo acionado é uma função de várias harmônicas da freqüência circular do eixo acionador. Como os coeficientes dos termos cos 4θ a cos 8θ são pequenos, em comparação ao coeficiente do termo cos 2θ , diz-se que o desalinhamento produz vibrações a duas vezes à velocidade de rotação da máquina.

3.2 Acoplamento de Engrenagens [07]

Tradicionalmente, o acoplamento de engrenagens é empregado como elemento de acoplamento flexível, em muitos processos químicos. Isto é devido ao seu custo relativamente baixo e à sua capacidade de transmitir altos torques, a velocidades moderadas, enquanto acomoda o desalinhamento.

Segundo, Gibbons [08], Mancuso [10] e Bloch [04], quando o acoplamento de engrenagens está desalinhado, são desenvolvidos três momentos. O desenvolvimento desses momentos e suas fórmulas são dados por Bloch [04]. A modificação dessas fórmulas foram feitas por Calistrat [06].

A equação de Blach, para o momento que resiste ao desalinhamento, é:

$$M_r = \frac{2Tq}{D_p} \cdot \frac{\delta_o}{2} \tag{6}$$

Onde:

 T_q é o troque transmitido;

 D_p é o diâmetro primitido do acoplamento e

 δ_o a distância axial entre pontos de contato, sobre os dentes das engrenagens.

Bloch mostrou que o momento produzido pelo torque, transmitido com deslinhamento, vale:

$$M_c = T_q \sin\beta \tag{7}$$

Onde: β é o ângulo de desalinhamento.

O autor, discute, também, a existência do momento produzido por um desalinhamento do acoplamento de engrenagens, devido ao atrito entre o encontro dos dentes. A fórmula deste momento é:

$$M_f = T_q \mu \tag{8}$$

onde: μ é o coeficiente de atrito seco.

Finalmente, Bloch mostrou que o momento total vale:

$$M_t = \left[(M_r)^2 + (M_f + M_c)^2 \right]^{1/2}$$
(9)

A Eq. 9 mostra que o momento produzido na coroa dentada do acoplamento de engrenagens, devido ao desalinhamento, é originário de três fontes, mas não apresenta nenhuma característica das freqüências de vibração.

O momento produzido pelo atrito entre os dentes do cubo e os dentes da luva é flutuante e complexo, e depende da geometria dos dentes, pois estes não são exatamente idênticos (êrro de módulo), sobre o cubo e a luva e do coeficiente de atrito seco, que varia, dente a dente, devido ao desgaste e à lubrificação.

Dewell e Mitchell [07], demostraram que a flutuação deste momento ocorre a cada duas voltas do eixo e que, também, é rico em hârmonicas. Então,

$$\frac{Q(2N)}{60} \tag{10}$$

onde: N velocidade de rotação do eixo e Q inteiro, que vale 1,2,3,4,... As freqüências resultantes são : 2N, 4N, 6N, 8N e outras.

3.3 Acoplamento de Disco Metálico

É um acoplamento de membro flexível. Este acoplamento tem recentemente ganho popularidade, graças à melhoria no seu projeto e na qualidade do material. Essas mudanças têm aumentado a sua confiabilidade e diminuído sua manutenção.

O acoplamento mostrado, na Fig. 3, gira no sentido contrário ao movimento dos ponteiros do relógio, quando visto do lado esquerdo. Com o parafuso 1 na posição A o momento produzido pela flexão do disco, através das reações dos parafusos A e D, devido ao desalinhamento, é máximo e vale:

$$M_t = K_1 \delta_1 R_p \tag{11}$$

Revista de Acústica e Vibrações , Vol.9-Junho/91 _____ 47

onde:

K1 é constante de rigidez do material do disco;

 δ_1 deflexão do disco no ponto A e

R_p o raio do círculo formado pelos parafusos.

Como o acoplamento gira no sentido anti-horário, o parafuso 1 move da posição A para B. O momento imposto sobre os parafuso 1,2,3 e 4, devido ao desalinhamento, é igual à:

$$M_t = K_2 \delta_2 R_p sen 45^o \tag{12}$$

onde:

48_

 K_2 é constante de rigidez do disco a 45° e δ_2 a deflexão do disco na posição B.

Figura 3: Acoplamento de Disco Metálico

Finalmente, quando o parafuso 1 se move de B para C, o momento produzido pela flexão do disco é máximo, quando o parafuso 1 estiver em C.

Observando a fig.3, pode-se ver que o momento produzido, quando o parafuso 1 se move de A para C, será repetido a cada um quarto de volta do eixo. Logo, a freqüência de vibração produzida pelo desalinhamento, no acoplamento, deveria ser quatro vezes a velocidade de rotação do eixo.

Desde que quatro parafusos foram usados, no acoplamento analisado, a freqüência de vibração pode ser considerada como uma função do número de parafuso.

Segundo Wright [11], a freqüência do ciclo de força, ou momento, é dado por:

- Revista de Acústica e Vibrações , Vol.9-Junho/91

$$f = \frac{Nq'}{60} \text{ se } q' \text{ é par e}$$
$$f = \frac{2Nq'}{60} \text{ se } q' \text{ é impar}$$
(13)

onde:

q' é o número de parafusos no acoplamento.

Este momento é periódico e complexo. Aplicando a Série de Fourier, aparecerão os seguintes componentes:

$$\frac{Q(4N)}{60} \tag{14}$$

Logo, as freqüências resultantes serão 4N, 8N, 12N, 16N, etc.

Observando-se a curva de rigidez do acoplamento, nota-se que a rigidez do disco não é linear. Esta muda, quando o parafuso 1 sai de A para B.

Por essa razão, a equação simplificada do movimento do sistema é a chamada Equação de Mathieu e, quando resolvida, produz os seguintes termos em freqüência, denominados de modulação :

$$\omega \pm \omega_{sc} \text{ ou } \omega_{sc} \pm \omega \tag{15}$$

onde:

 ω_{sc} é a freqüência circular de K(t) e ω a freqüência circular da excitação.

Para o acoplamento de disco vale:

$$N \pm 4qN \quad ou \quad 4qN \pm N \tag{16}$$

Se outra resposta de vibração ocorrer no sistema a 2N, 3N vezes a velocidade de rotação do eixo, então existirão freqüências a:

$$QN \pm 4qN \text{ ou } 4qN \pm QN \tag{17}$$

onde: Q = 0, 1, 2, 3, ...

4 Banco de Ensaios

A fig.4 apresenta um esquema geral do banco de ensaios, incluindo os equipamentos utilizados com seus respectivos números de identificação. O acoplamento utilizado no ensaio foi do tipo "Flexível".

Revista de Acústica e Vibrações , Vol.9-Junho/91 _____ 49

Figura 4: Banco de Ensaios

 50_{-}

5 Resultados dos Ensaios

5.1 Assinatura do Banco

(vide figura 5)

5.2 Desalinhamento Angular

(vide figura 6)

Figura 6: Desalinhamento Angular

5.3 Desalinhamento Combinado

(vide figura 7)

Figura 7: Desalinhamento Combinado

5.4 Pré-Carga

(vide figura 8)

Figura 8: Pré-Carga

6 Considerações Finais

O presente artigo mostrou que teoricamente o desalinhamento produz vibrações à várias harmônicas da velocidade de rotação, sendo esses pares, i. e., 2xN, 4xN, 6xN, 8xN. Mas realizados os ensaios, verificou-se que a maior influência é devido a segunda hamônica, i. e., 2xN. As órbitas típicas teóricas para o dsalinhamento foram reproduzidas nos ensaios realizados, indicando que o

___ Revista de Acústica e Vibrações , Vol.9-Junho/91

 52_{-}

defeito de desalinhamento pode ser facilmente diagnosticado por órbitas. Segundo o espectro de freqüência, apareceu um pico a duas vezes a rotação da máquina, quando foi provocado no banco o defeito de desalinhamento angular. Provocando-se o defeito de pré-carga notou-se o aparecimento de picos a 2xN e 4xN. Os ensaios realizados validaram todo o desenvolvimento teórico apresentado.

7 Bibliografia

- [01] ALMEIDA, M.T., Vibrações Mecânicas para Engenheiros, 1a. ed., Edgard Blücher, São Paulo, 1987, 400p.
- [02] API STANDARD 670, Vibration, Axial-Position, and Bearing Temperature Monitoring Systems, 2a. ed. June 1986, 42p.
- [03] BENTLY, D. E., Orbits, Bently Book One, Bently Nevada Corporation, Minden, Nevada, 1982, 157p.
- [04] BLOCH, H.P., How to Uprate Turbomachinery by Optimized Coupling Selection, Hydrocarbon Processing, vol. 55. No.1, Jan 1976, 1976, pp. 87-90.
- [05] BRIGHAM, E.O., The Fast Fourier Transform, Prentice-Hall, Englewood Cliffs, NJ, 1975, 252 p.
- [06] CALISTRAT, M.M., Personal Comunications-Letter, The Koppers Company, Baltimore, Maryland, June 15, 1978.
- [07] DEWELL, D.L., MITCHELL, L.D., Detection of a Misaligned Disk Coupling Using Spectrum Analysis, Journal of Vibration, Acustics, Stress and Reliability in Desing, vol. 106, Jan 1984, pp. 9-16.
- [08] GIBBONS, C. B., Coupling Misalignment Forces, Proceedings of the Fifth Turbomachinery Symposium, Gas Turbine Laboratories, Texas A & M University, College Station, texas 1976, pp 111-116.
- [09] LIMA JR., J.J. de, Estudo Comparativo entre Diagnóstico de Defeitos em Máquinas Rotativas por Órbita e por Espectro de Freqüência, Usando Aquisição de Dados, Dissertação de Mestrado, DME/IEM/EFEI, 1990, 175 p.
- [10] MANCUSO, J.R., Moments and Forces Imposed on Power Transmission Systems Due to Misalignment of a Crowned Tooth Coupling, Master Thesis, Pennsylvania State University, 1971.
- [11] WRIGHT, J., Which Flexible Coupling, The 1975 1976 Power Transmission and Bearing Handbook, pp. A148-A158.

Revista de Acústica e Vibrações , Vol.9-Junho/91 _____ 53