Medición de impedancia acústica in situ con matriz de micrófonos y algoritmos de promoción de dispersión

Autores/as

  • Thiago C. Malaguetta Engenharia Elétrica e de Computação, Universidade Estadual de Campinas
  • Johannes W. Farias Engenharia Elétrica e de Computação, Universidade Estadual de Campinas
  • Eric Brandão Engenharia Acústica, Universidade Federal de Santa Maria
  • Bruno Sanches Masiero Engenharia Elétrica e de Computação, Universidade Estadual de Campinas https://orcid.org/0000-0002-2246-4450

DOI:

https://doi.org/10.55753/aev.v33e50.86

Palabras clave:

impedância acústica, medição in situ, arranjo de microfones, algoritmos promotores de esparsidade

Resumen

El comportamiento acústico de aulas, teatros, automóviles y aviones es de suma importancia y objeto de constante mejora. Para poder simular y predecir el comportamiento de estos espacios es necesario conocer su geometría y la impedancia acústica de los materiales de construcción. Este trabajo tiene como objetivo caracterizar la impedancia acústica de los materiales de construcción utilizando una matriz de micrófonos y técnicas de procesamiento de matriz con regularización que promueve la escasez. Se desarrolló un modelo computacional para simular la reflexión de una onda por un material poroso infinito y así evaluar la factibilidad de utilizar la técnica propuesta. Se comprobó que las técnicas de promoción de la dispersión estudiadas fueron capaces de localizar y segregar el sonido directo del sonido reflejado, para su posterior cálculo de la impedancia acústica. Los resultados indican que el método es viable para altas frecuencias pero presenta un sobredimensionamiento de la impedancia al compararlo con los valores teóricos para medias y bajas frecuencias.

Citas

VORLÄNDER, M. Auralization: Fundamentals of Acoustics, Modelling, Simulation, Algorithms and Acoustic Virtual Reality. [S.l.]: Springer, 2007.

ISO–10534-2. Acoustics determination of sound absorption coefficient and impedance in impedance tubes-Part 2: Transfer-function method. 1998.

ISO–354. Measurement of sound absorption in a reverberation room Title. 1985.

BRANDÃO, E. Análise teórica e experimental do processo de medição in situ da impedância acústica. Tese (Doutorado) — Universidade Federal de Santa Catarina, Florianópolis, Brasil, 2011.

TIJS, E.; BREE, H. E. D.; BRANDÃO, E. Large scale in situ acoustic reflection measurements in a theatre. In: Proc. of Nag/Daga. [S.l.: s.n.], 2009. p. 549–552.

TIJS, E.; BREE, H. E. D.; BRANDÃO, E. “In situ PU surface impedance measurements for quality control in an assembly line,”. Proceedings of SAE international, 2009. doi: 10.4271/2009-01-2142 DOI: https://doi.org/10.4271/2009-01-2142

BRANDÃO, E.; LENZI, A.; PAUL, S. A review of the in situ impedance and sound absorption measurement techniques. Acta Acustica united with Acustica, v. 101, n. 3, p. 443–463, 2015. DOI: https://doi.org/10.3813/AAA.918840

CHAMPOUX, Y.; BERRY, A.; AMEDÍN, C. K. Acoustical characterization of absorbing porous materials through transmission measurements in a free field. v. 102, n. 4, p. 1982–1994, 1997. doi: 10.1121/1.419689 DOI: https://doi.org/10.1121/1.419689

GARAI, M. Measurement of the Sound-Absorption Coefficient In Situ . The Reflection Method Using Periodic Pseudo- random Sequences of Maximum Length. Applied Acoustics, v. 39, p. 119–139, 1993. doi: 10.1016/0003-682X(93)90032-2 DOI: https://doi.org/10.1016/0003-682X(93)90032-2

MOMMERTZ, E. Angle-dependent in-situ measurements of reflection coefficients using a subtraction technique. Applied Acoustics, v. 46, n. 3, p. 251–263, 1995. doi: 10.1016/0003-682X(95)00027-7 DOI: https://doi.org/10.1016/0003-682X(95)00027-7

DUCOURNEAU, J.; PLANEAU, V.; CHATILLON, J.; NEJADE, A. Measurement of sound absorption coefficients of flat surfaces in a workshop. Applied Acoustics, v. 70, n. 5, p. 710–721, 2009. doi: 10.1016/j.apacoust.2008.09.001 DOI: https://doi.org/10.1016/j.apacoust.2008.09.001

OTTINK, M.; BRUNSKOG, J.; JEONG, C.-H.; FERNANDEZ-GRANDE, E.; TROJGAARD, P.; TIANA-ROIG, E. In situ measurements of the oblique incidence sound absorption coefficient for finite sized absorbers. The Journal of the Acoustical Society of America, v. 139, n. 1, p. 41–52, 2016. doi: 10.1121/1.4938225 DOI: https://doi.org/10.1121/1.4938225

RICHARD, A.; FERNANDEZ-GRANDE, E.; BRUNSKOG, J.; JEONG, C.-h. Impedance estimation of a finite absorber based on spherical array measurements. In: Proc. 22nd International Congress on Acoustics. [S.l.: s.n.], 2016.

van TREES, H. L. Optimum array processing: Part IV of detection, estimation, and modulation theory. [S.l.]: John Wiley & Sons, 2004. ISBN: 978-0-471-46383-2

XU, L.; ZHAO, K.; LI, J.; STOICA, P. Wideband source localization using sparse learning via iterative minimization. Signal Processing, v. 93, n. 12, p. 3504 – 3514, 2013. doi: 10.1016/j.sigpro.2013.04.005 DOI: https://doi.org/10.1016/j.sigpro.2013.04.005

LI, J.; ZHENG, D.; STOICA, P. Angle and waveform estimation via relax. IEEE transactions on aerospace and electronic systems, IEEE, v. 33, n. 3, p. 1077–1087, 1997. doi: 10.1109/7.599338 DOI: https://doi.org/10.1109/7.599338

BRANDÃO, E. Acústica de Salas: Projeto e Modelagem. 1. ed. São Paulo: Blucher, 2016.

NASCIMENTO, V. H.; MASIERO, B. S.; RIBEIRO, F. P. Acoustic imaging using the Kronecker array transform. In: COELHO, R. F.; NASCIMENTO, V. H.; QUEIROZ, R. L. de; ROMANO, J. M. T.; CAVALCANTE, C. C. (Ed.). Signals and Images: Advances and Results in Speech, Estimation, Compression, Recognition, Filtering, and Processing. [S.l.]: CRC Press, 2015. cap. 6, p. 153–178. DOI: https://doi.org/10.1201/b19385-9

LAI, C. C.; NORDHOLM, S. E.; LEUNG, Y. H. A Study Into the Design of Steerable Microphone Arrays. [S.l.]: Springer, 2017. doi: 10.1007/978-981-10-1691-2 DOI: https://doi.org/10.1007/978-981-10-1691-2

TAN, X.; ROBERTS, W.; LI, J.; STOICA, P. Sparse learning via iterative minimization with application to mimo radar imaging. IEEE Transactions on Signal Processing, IEEE, v. 59, n. 3, p. 1088–1101, 2011. doi: 10.1109/TSP.2010.2096218 DOI: https://doi.org/10.1109/TSP.2010.2096218

STOICA, P.; SELÉN, Y. Cyclic minimizers, majorization techniques, and the expectation-maximization algorithm: a refresher. IEEE Signal Processing Magazine, IEEE, v. 21, n. 1, p. 112–114, 2004. doi: 10.1109/MSP.2004.1267055 DOI: https://doi.org/10.1109/MSP.2004.1267055

ALLARD, J. F.; CHAMPOUX, Y.; NICOLAS, J. Impedance Measurement At Oblique Incidence and Low Frequencies. Journal of the Acoustical Society of America, v. 86, n. 2, p. 766–770, 2014. doi: 10.1121/1.398198 DOI: https://doi.org/10.1121/1.398198

VERTATSCHITSCH, E.; HAYKIN, S. Nonredundant arrays. Proceedings of the IEEE, v. 74, n. 1, p. 217–217, Jan 1986. ISSN 0018-9219. doi: 10.1109/PROC.1986.13435 DOI: https://doi.org/10.1109/PROC.1986.13435

Capa - Medição in situ de impedância acústica com arranjo de microfones e algoritmos promotores de esparsidade (Acústica e Vibrações 50)

Publicado

2018-12-28

Cómo citar

C. MALAGUETTA, T.; W. FARIAS, J.; BRANDÃO, E.; MASIERO, B. S. Medición de impedancia acústica in situ con matriz de micrófonos y algoritmos de promoción de dispersión. Acústica e Vibrações, [S. l.], v. 33, n. 50, p. 53–64, 2018. DOI: 10.55753/aev.v33e50.86. Disponível em: https://revista.acustica.org.br/acustica/article/view/aev50_impedancia. Acesso em: 18 may. 2024.