Fitting of a lumped-element model of the human middle ear using different objective functions

Authors

  • Lucas Lobato Laboratório de Vibrações e Acústica, Universidade Federal de Santa Catarina, Florianópolis, SC https://orcid.org/0000-0002-6915-3537
  • Igor Bavaresco Laboratório de Vibrações e Acústica, Universidade Federal de Santa Catarina, Florianópolis, SC
  • Stephan Paul Laboratório de Vibrações e Acústica, Universidade Federal de Santa Catarina, Florianópolis, SC https://orcid.org/0000-0001-8181-1048
  • Júlio Cordioli Laboratório de Vibrações e Acústica, Universidade Federal de Santa Catarina, Florianópolis, SC

DOI:

https://doi.org/10.55753/aev.v35e52.34

Keywords:

middle-ear, mathematical model, fitting, objective functions

Abstract

Lumped parameter models have served to study the dynamics of the human middle ear since the mid-twentieth century.  Generally, these models can be fitted using experimental data, which can be gathered using a single or multiple-objective function.  However, adjusting for physical parameters using a single objective function may interfere with model representativeness.  As such, such models become less capable of corresponding to typical physiology of the middle ear under normal and pathological conditions. This article presents a mechanical lumped parameter model of the human middle ear and a study on its adjustment, preliminarily found using the single optimization of each proposed dynamic quantity, followed by a multiple-objective optimization of these quantities. The results obtained are then compared with experimental reference data in order to evaluate the model’s best representativeness using a multi-objective adjustment.

References

MOORE, B.C.J. An Introduction to the Psychology of Hearing. Emerald, 2012. ISBN 9781780520384. Disponível em: https://books.google.com.br/books?id=LM9U8e28pLMC.

IHRLE, Sebastian; EIBER, Albrecht; EBERHARD, Peter. Modeling of the incudomalleolar joint within a biomechanical model of the human ear. Multibody System Dynamics, v. 39, n. 4, p. 291–310, Apr 2017. ISSN 1573-272X. Disponível em: https://doi.org/10.1007/s11044-016-9550-7. DOI: https://doi.org/10.1007/s11044-016-9550-7

GREEF, Daniel De; BUYTAERT, Jan AN; AERTS, Johan RM; HOOREBEKE, Luc Van; DIERICK, Manuel; DIRCKX, Joris. Details of human middle ear morphology based on micro-ct imaging of phosphotungstic acid stained samples. JOURNAL OF MORPHOLOGY, v. 276, n. 9, p. 1025–1046, 2015. ISSN 0362-2525. Disponível em: http://dx.doi.org/10.1002/jmor.20392. DOI: https://doi.org/10.1002/jmor.20392

GOTTLIEB, Peter K.; VAISBUCH, Yona; PURIA, Sunil. Human ossicular-joint flexibility transforms the peak amplitude and width of impulsive acoustic stimuli. The Journal of the Acoustical Society of America, v. 143, n. 6, p. 3418–3433, 2018. Disponível em: https://doi.org/10.1121/1.5039845. DOI: https://doi.org/10.1121/1.5039845

WILLCOX, Thomas O.; ARTZ, Gregory J. Chapter 26 - auditory system disorders. In: SCHAPIRA, Anthony H.V.; BYRNE, Edward; DIMAURO, Salvatore; FRACKOWIAK, Richard S.J.; JOHNSON, Richard T.; MIZUNO, Yoshikuni; SAMUELS, Martin A.; SILBERSTEIN, Stephen D.; WSZOLEK, Zbigniew K. (Ed.). Neurology and Clinical Neuroscience. Philadelphia: Mosby, 2007. p. 329 – 335. ISBN 978-0-323-03354-1. Disponível em: http://www.sciencedirect.com/science/article/pii/B9780323033541500304. DOI: https://doi.org/10.1016/B978-0-323-03354-1.50030-4

WHO. World Health Organization: Global Costs of Unaddressed Hearing Loss and Cost-effectiveness of Interventions. World Health Organization, 2017. ISBN 9789241512046. Disponível em: https://books.google.com.br/books?id=6LOaswEACAAJ.

PAOLIS, Annalisa De; BIKSON, Marom; NELSON, Jeremy T.; RU, J. Alexander de; PACKER, Mark; CARDOSO, Luis. Analytical and numerical modeling of the hearing system: Advances towards the assessment of hearing damage. Hearing Research, v. 349, p. 111 – 128, 2017. ISSN 0378-5955. Noise in the Military. Disponível em: http://www.sciencedirect.com/science/article/pii/S0378595516302787. DOI: https://doi.org/10.1016/j.heares.2017.01.015

ONCHI, Yutaka. A study of the mechanism of the middle ear. The Journal of the Acoustical Society of America, v. 21, n. 4, p. 404–410, 1949. Disponível em: https://doi.org/10.1121/1.1906527. DOI: https://doi.org/10.1121/1.1906527

MøLLER, Aage R. Network model of the middle ear. The Journal of the Acoustical Society of America, v. 33, n. 2, p. 168–176, 1961. Disponível em: https://doi.org/10.1121/1.1908610. DOI: https://doi.org/10.1121/1.1908610

ZWISLOCKI, J. Analysis of the middle-ear function. part i: Input impedance. The Journal of the Acoustical Society of America, v. 34, n. 9B, p. 1514–1523, 1962. Disponível em: https://doi.org/10.1121/1.1918382. DOI: https://doi.org/10.1121/1.1918382

FENG, B.; GAN, R. Z. Lumped parametric model of the human ear for sound transmission. Biomechan Model Mechanobiol, n. 3, p. 33–47, 2004. DOI: https://doi.org/10.1007/s10237-004-0044-9

GARLAND, Philip. A lumped parameter mechanical model of tensor tympani muscle contraction of the middle ear. Proceedings of Meetings on Acoustics, v. 11, n. 1, p. 050001, 2010. Disponível em: https://asa.scitation.org/doi/abs/10.1121/1.3592354. DOI: https://doi.org/10.1121/1.3592354

RUSINEK, Rafal. Sound transmission in the first nonlinear model of middle ear with an active implant. Mathematical Problems in Engineering, 2020. Disponível em: https://doi.org/10.1155/2020/4580467. DOI: https://doi.org/10.1155/2020/4580467

VOSS, Susan E.; ROSOWSKI, John J.; MERCHANT, Saumil N.; PEAKE, William T. Middle-ear function with tympanic-membrane perforations. II. A simple model. The Journal of the Acoustical Society of America, v. 110, n. 3, p. 1445–1452, 2001. Disponível em: https://doi.org/10.1121/1.1394196. DOI: https://doi.org/10.1121/1.1394196

O’CONNOR, Kevin N.; PURIA, Sunil. Middle-ear circuit model parameters based on a population of human ears. The Journal of the Acoustical Society of America, v. 123, n. 1, p. 197–211, 2008. Disponível em: https://doi.org/10.1121/1.2817358. DOI: https://doi.org/10.1121/1.2817358

VOSS, Susan E.; MERCHANT, Gabrielle R.; HORTON, Nicholas J. Effects of middle-ear disorders on power reflectance measured in cadaveric ear canals. Ear and Hearing, v. 33, n. 2, p. 195–208, 2012. Disponível em: https://journals.lww.com/ear-hearing/Abstract/2012/03000/Effects_of_Middle_Ear_Disorders_on_Power.5.aspx. DOI: https://doi.org/10.1097/AUD.0b013e31823235b5

XUE, Lin; LIU, Houguang; WANG, Wenbo; YANG, Jianhua; ZHAO, Yu; HUANG, Xinsheng. The role of third windows on human sound transmission of forward and reverse stimulations: A lumped-parameter approach. The Journal of the Acoustical Society of America, v. 147, n. 3, p. 1478–1490, 2020. Disponível em: https://doi.org/10.1121/10.0000846. DOI: https://doi.org/10.1121/10.0000846

VOSS, Susan E.; ROSOWSKI, John J.; MERCHANT, Saumil N.; PEAKE, William T. Acoustic responses of the human middle ear. Hearing Research, v. 150, n. 1, p. 43 – 69, 2000. ISSN 0378-5955. Disponível em: http://www.sciencedirect.com/science/article/pii/S0378595500001775. DOI: https://doi.org/10.1016/S0378-5955(00)00177-5

ROSOWSKI, John J.; NAKAJIMA, Hideko H.; HAMADE, Mohamad A.; MAHFOUD, Lorice; MERCHANT, Gabrielle R.; HALPIN, Christopher F.; MERCHANT, Saumil N. Ear-canal reflectance, umbo velocity, and tympanometry in normal-hearing adults. Ear and Hearing, v. 33, n. 1, p. 19–34, 2010. Disponível em: https://journals.lww.com/ear-hearing/fulltext/2012/01000/Ear_Canal_Reflectance,_Umbo_Velocity,_and.3.aspx. DOI: https://doi.org/10.1097/AUD.0b013e31822ccb76

NAKAJIMA, Hideko Heidi; ROSOWSKI, John J.; SHAHNAZ, Navid; VOSS, Susan E. Assessment of ear disorders using power reflectance. Ear and hearing, v. 34, n. 1, p. 48–53, 2013. DOI: https://doi.org/10.1097/AUD.0b013e31829c964d

MERCHANT, Gabrielle R.; MERCHANT, Saumil N.; ROSOWSKI, John J.; NAKAJIMA, Hideko Heidi. Controlled exploration of the effects of conductive hearing loss on wideband acoustic immittance in human cadaveric preparations. Hearing Research, v. 341, p. 19 – 30, 2016. ISSN 0378-5955. Disponível em: http://www.sciencedirect.com/science/article/pii/S0378595516300259. DOI: https://doi.org/10.1016/j.heares.2016.07.018

LOBATO, Lucas; PAUL, Stephan; CORDIOLI, Julio. Statistical analysis of the mechanical and dynamical behavior of the human middle ear from literature data review. Submetido para publicação, 2020.

LOBATO, Lucas; CORDIOLI, Julio A.; PAUL, Stephan. Lumped parameter model and Monte Carlo Simulation to study middle ear uncertainties. In: 23RD INTERNATIONAL CONGRESS ON ACOUSTICS. Deutsche Gesellschaft für Akustik, 2019. Disponível em: https://publications.rwth-aachen.de/record/770195.

VOLANDRI, G.; PUCCIO, F. Di; FORTE, P.; CARMIGNANI, C. Biomechanics of the tympanic membrane. Journal of Biomechanics, v. 44, n. 7, p. 1219 – 1236, 2011. ISSN 0021-9290. Disponível em: http://www.sciencedirect.com/science/article/pii/S0021929011000224. DOI: https://doi.org/10.1016/j.jbiomech.2010.12.023

CHENG, Tao; DAI, Chenkai; GAN, Rong Z. Viscoelastic properties of human tympanic membrane. Annals of Biomedical Engineering, v. 35, n. 2, p. 305–314, Feb 2007. Disponível em: https://doi.org/10.1007/s10439-006-9227-0. DOI: https://doi.org/10.1007/s10439-006-9227-0

KARMODY, C. S.; NORTHROP, C. C.; LEVINE, S. R. The incudostapedial articulation: new concepts. Otol. Neurotol, n. 30, p. 900–997, 2009. Disponível em: https://journals.lww.com/otology-neurotology/Abstract/2009/10000/The_Incudostapedial_Articulation__New_Concepts.22.aspx. DOI: https://doi.org/10.1097/MAO.0b013e3181b0fff7

IHRLE, S.; GERIG, R.; DOBREV, I.; RööSLI, C.; SIM, J.H.; HUBER, A.M.; EIBER, A. Biomechanics of the incudo-malleolar-joint – experimental investigations for quasi-static loads. Hearing Research, v. 340, p. 69 – 78, 2016. ISSN 0378-5955. MEMRO 2015 – Basic Science meets Clinical Otology. Disponível em: http://www.sciencedirect.com/science/article/pii/S0378595515300861. DOI: https://doi.org/10.1016/j.heares.2015.10.015

ZHANG, Xiangming; GAN, Rong Z. Experimental measurement and modeling analysis on mechanical properties of incudostapedial joint. Biomechanics and Modeling in Mechanobiology, v. 10, n. 5, p. 713–726, Oct 2011. ISSN 1617-7940. Disponível em: https://doi.org/10.1007/s10237-010-0268-9. DOI: https://doi.org/10.1007/s10237-010-0268-9

SIM, Jae Hoon; CHATZIMICHALIS, Michail; LAUXMANN, Michael; RÖÖSLI, Christof; EIBER, Albrecht; HUBER, Alexander M. Complex stapes motions in human ears. Journal of the Association for Research in Otolaryngology, v. 11, n. 3, p. 329–341, Sep 2010. ISSN 1438-7573. Disponível em: https://doi.org/10.1007/s10162-010-0207-6. DOI: https://doi.org/10.1007/s10162-010-0207-6

CALERO, Diego; LOBATO, Lucas; PAUL, Stephan; CORDIOLI, Júlio A. Analysis of the Human Middle Ear Dynamics Through Multibody Modeling. Journal of Biomechanical Engineering, v. 142, n. 7, 05 2020. ISSN 0148-0731. 071012. Disponível em: https://doi.org/10.1115/1.4046689. DOI: https://doi.org/10.1115/1.4046689

VOSS SUSAN E. HORTON, Nicholas; WOODBURY, Rebecca R.; SHEFFIELD, Kathryn N. Sources of variability in reflectance measurements on normal cadaver ears. Ear and Hearing, v. 29, n. 4, p. 651–665, 2008. Disponível em: https://doi.org/10.1097/AUD.0b013e318174f07c. DOI: https://doi.org/10.1097/AUD.0b013e318174f07c

CHEN, Huayue; OKUMURA, Toshihiko; EMURA, Shoichi; SHOUMURA, Shizuko. Scanning electron microscopic study of the human auditory ossicles. Annals of Anatomy - Anatomischer Anzeiger, v. 190, n. 1, p. 53 – 58, 2008. ISSN 0940-9602. Disponível em: http://www.sciencedirect.com/science/article/pii/S0940960207000866. DOI: https://doi.org/10.1016/j.aanat.2007.06.002

LEMMERLING, M M; STAMBUK, H E; MANCUSO, A A; ANTONELLI, P J; KUBILIS, P S. Ct of the normal suspensory ligaments of the ossicles in the middle ear. American Journal of Neuroradiology, American Journal of Neuroradiology, v. 18, n. 3, p. 471–477, 1997. ISSN 0195-6108. Disponível em: http://www.ajnr.org/content/18/3/471.

Capa - Ajuste de um modelo de parâmetros concentrados da orelha média usando diferentes funções objetivo

Published

2020-07-31

How to Cite

LOBATO, L.; BAVARESCO, I.; PAUL, S.; CORDIOLI, J. Fitting of a lumped-element model of the human middle ear using different objective functions. Acoustics and Vibrations (Acústica e Vibrações), [S. l.], v. 35, n. 52, p. 45–57, 2020. DOI: 10.55753/aev.v35e52.34. Disponível em: https://revista.acustica.org.br/acustica/article/view/aev52_orelha. Acesso em: 21 nov. 2024.