Numerical and experimental analysis of acoustic impedance and sound absorption measurements using the in situ technique with two microphones
DOI:
https://doi.org/10.55753/aev.v32e49.93Keywords:
in situ measurement, sound absorption, acoustic impedance, porous materialsAbstract
Acoustic impedance and sound absorption are important parameters for several areas of Acoustic Engineering, such as: Room Acoustics, Noise Control, Auralization and Electroacoustics. Thus, the measurement with precision and accuracy of the acoustic impedance of materials is necessary. In this work, the in situ measurement method of sound absorption and acoustic impedance using two microphones (PP System) is described. Then, two models for deduction of surface impedance are presented, they are: PWA model and q-term algorithm. A model using the Finite Element Method (FEM) is proposed and an analysis based on it is performed. Through the FEM model it was possible to demonstrate the convergence of the q-term algorithm for locally reactive samples and the divergence of the PWA model for low frequencies. Also through the FEM model an analysis of finite samples of circular surfaces was performed. The error due to small sample sizes was identified, a literature-based strategy was applied and a significant improvement was obtained. An experimental bench was built and tested. The experimental results from the bench for a locally reactive sample had good agreement with the Delany and Bazley model and with the results obtained in Impedance Tube, agreeing with the predictions made from the FEM model. Errors found in the numerical results were also found in the experimental results, showing that the FEM model is a valid tool to make predictions about the in situ measurement method using the PP System. At the end, the measurement of a sample in a common environment is presented, showing the good applicability of the in situ technique using the PP System.
References
ALLARD J. F.; SIEBEN, B. Measurements of acoustic impedance in a free field with two microfones and a spectrum analyzer. Journal of Acoustical Society of America, 1984. DOI: https://doi.org/10.1121/1.392008
ALVARES, F.; JACOBSEN. D. An iterative method for determining the surface impedance of acoustic materials in situ. Internoise, 2008.
BERANEK, L. Precision measurement of acoustic impedance. Journal of Acoustical Society of America, 1940. doi: 10.1121/1.1916066 DOI: https://doi.org/10.1121/1.1916066
BRANDAO, E. Analise teorica e experimental do processo de medicao in situ da impedância acustica. Tese de doutorado. UFSC, 2011.
BRANDAO, E. Acustica de Salas: Projeto e Modelagem. [S.l.]: Blucher, 2016. ISBN 9788521210061.
BRANDAO E.; LENZI, A.; PAUL, S. A review of the in situ impedance and sound absorption measurement techniques. Acta Acustica united with Acustica, 2015. doi: 10.3813/AAA.918840 DOI: https://doi.org/10.3813/AAA.918840
BRANDAO, E.; LENZI. A.; FULCO, E.; TIJS, E. Error estimation due to sample size effects of in situ surface impedance measurements. Journal of the Acoustical Society of America, 2010. doi: 10.1121/1.3385186 DOI: https://doi.org/10.1121/1.3385186
BRANDAO, E.; MAREZE, P. H.; SILVA, A. R. Impedance measurement of non-locally reactive samples and the influence of the assumption of local reaction. Journal of Acoustic Society of America, 2012. doi: 10.1121/1.4799015 DOI: https://doi.org/10.1121/1.4799015
CHAMPOUX, J.; NICOLAS. Y.; ALLARD., J. F. Measurement of acoustic impedance in a free field at low frequencies. Journal of Sound and Vibration, 1988. doi: 10.1016/0022-460X(88)90286-6 DOI: https://doi.org/10.1016/0022-460X(88)90286-6
CHAMPOUX, J.; ALLARD., J. F. Dynamic tortuosity and bulk modulus in air-saturated porous media, J. Appl. Phys. 70, 1991, pp. 1975-1979. doi: 10.1063/1.349482 DOI: https://doi.org/10.1063/1.349482
DELANY M. E.; BAZLEY E. N., Acoustical properties of fibrous absorbent materials, Applied Acoustics 3, 1970, pp. 105-116. doi: 10.1016/0003-682X(70)90031-9 DOI: https://doi.org/10.1016/0003-682X(70)90031-9
DI X.; GILBERT, K. An exact laplace transform formulation for a point source above a ground surface. Journal of the Acoustical Society of America, 1993. doi: 10.1121/1.405435 DOI: https://doi.org/10.1121/1.405435
FAHY F.J.; WALKER, J. Fundamentals of Noise and Vibration: Spoon, 1998. doi: 10.4324/9780203477410 DOI: https://doi.org/10.4324/9780203477410
GARAI, M. Measurement of the sound-absorption coefficient in situ: The reflection method using periodic pseudo random sequences of maximum length. Applied Acoustics, 1993. doi: 10.1016/0003-682X(93)90032-2 DOI: https://doi.org/10.1016/0003-682X(93)90032-2
HIROSAWA, K.; TAKASHIMA, K.; NAKAGAWA, H.; KON, M.; YAMAMOTO, A. Comparison of three measurement techniques for the normal absorption coefficient of sound absorbing materials in the free field. Journal of the Acoustical Society of America, 2009. doi: 10.1121/1.3242355 DOI: https://doi.org/10.1121/1.3242355
HIROSAWA, K.; TAKASHIMA, K.; NAKAGAWA, H.; KON, M.; YAMAMOTO, A. Comparison of three measurement techniques of normal absorption coefficients in free field method using boundary element method. SAPEM, 2008.
INTERNATIONAL STANDARD ORGANIZATION. ISO 10534: Acoustics –Determination of sound absorption coefficient and impedance in impedance tube. 1998.
INTERNATIONAL STANDARD ORGANIZATION. ISO 354: Acoustics – Measurement of sound absorption in a reverberation room. 2003.
INTERNATIONAL STANDARD ORGANIZATION. ISO 9053: Acoustics – Materials for acoustical applications - Determination of airflow resistance. 1991.
JOHNSON D. L.; KOPLIK J.; DASHEN R. Theory of dynamic permeability and tortuosity in fluid-saturated porous media, J. Fluid Mech. 176, 1987, pp. 379-402. doi: 10.1017/S0022112087000727 DOI: https://doi.org/10.1017/S0022112087000727
LI, J. F.; HODGSON, M. Use of pseudo-random sequences and a single microphone to measure surface impedance at oblique incidence. Journal of the Acoustical Society of America, 1997. doi: 10.1121/1.419634 DOI: https://doi.org/10.1121/1.419634
MAREZE, P. H. Analise da influencia da microgeometria na absorção sonora de materiais porosos de estrutura rígida. Tese de doutorado, UFSC, 2013.
MOMMERTZ, E. Angle-dependent in-situ measurements of reflection coefficients using a subtraction technique. The Journal of the Acoustical Society of America, 1995. doi: 10.1016/0003-682X%2895%2900027-7
TOMIKU, R.; OTSURU, T.; DIN, N. B. C. Ensemble averaged surface normal impedance of material using an in-situ technique: Preliminary study using boundary element method. The Journal of the Acoustical Society of America, 2012. doi: 10.1121/1.3125327 DOI: https://doi.org/10.1121/1.3125327
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2017 Acústica e Vibrações
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.